岩土工程有限元分析软件

PLAXIS 2D 2015[®]

案例教程

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层,100043

计算机程序 PLAXIS 及全部相关文档都是受专利法和版权法保护的产品。全球范围的所有权属于 Plaxis bv。如果没有 Plaxis 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19 号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©,2015

記信达

目录

砂土地基上圆形基础沉降分析	1
几何模型	2
案例 A: 刚性基础	2
1.1 几何输入	2
1.2 网格划分	8
1.3 计算	10
1.4 计算结果	13
案例 B: 柔性基础	16
2.1 修改土层	16
2.2 生成网格	18
2.3 计算	18
2.4 查看计算结果	20

砂土地基上圆形基础沉降分析

本章是 PLAXIS 2D 的第一个应用: 砂土地基上的圆形基础沉降。这是熟悉程序实际应用的第一步。

这里详细讲述了几何模型创建的一般步骤、有限元网格的划分、有限元计算的执行和输 出结果的评估等。本例中涉及的信息将在后面的示例中应用,因此在进一步学习其他教程案 例之前透彻学习本例是十分重要的。

目标:

- 开始一个新的项目
- 创建轴对称模型
- 使用钻孔工具创建土层
- 为土层创建并指定材料数据组(摩尔库伦模型)
- 定义指定位移
- 使用板单元创建基础
- 为板单元创建并指定材料数据组
- 创建荷载
- 生成网格
- 使用 KO 生成初始应力场
- 定义塑性阶段
- 在计算阶段激活并修改荷载值
- 查看计算结果
- 为生成曲线选择点
- 创建"载荷-位移"曲线

几何模型

图 1 表示放置在 4m 厚砂土层上半径为 1m 的一个圆形基础。砂土层下是深厚的坚硬 岩石层。这一课程旨在计算土体在上部荷载作用下产生的位移和应力。计算将使用刚性基础 和柔性基础两种考虑方法。两种情况下的有限元模型的几何形状是相同的。模型内不包含岩 石层,其作用是在砂土层下应用适当的边界条件来考虑。为了避免边界的影响,适当反映砂 土层的各种变形机理,地基模型在水平方向上扩展到半径为 5m 的圆形。

图 1 砂土层上圆形基础的沉降

案例 A: 刚性基础

在第一个计算实例中,我们考虑一个刚性基础。基础的沉降通过模拟其在砂土层上的均 匀压入来模拟,而不模拟基础本身。

这一模拟方法使得计算模型非常简单,因而被作为第一个实例。不过,这一方法也有其 缺点,例如,它没有给出基础结构内力的任何信息。本课提供的第二种方法将讨论作用在柔 性基础上的外部荷载,是一个更先进的模拟方法。

1.1 几何输入

²²²双击输入程序图标启动 PLAXIS,出现一个**快速选择**对话框。你可以打开一个已有项 目或启动一个新项目(图 2)。

图 2 砂土层上圆形基础的沉降

选择启动新项目。将弹出项目属性窗口,项目属性窗口包括项目标签和模型标签两部分(图3和图4)。

项目属性

每个分析项目的第一步是设置有限元模型的基本参数。这要通过项目属性窗口完成。这 些设置包括问题的描述,分析类型,单元基本类型,绘图区的基本单位和尺寸。

项目属性		
项目(P) 模型(M)		
PLAXIS	essential for geotechnical profes	sionals
项目 标题 课程 1 目录 文件名		
- 注释 圆形基础沉降	公司logo 尚未上传logo	
	下一步(N) 确认(O) 取消	j(C)

图 3 项目属性窗口项目标签

本例的属性窗口设置,按照下列步骤:

- 在工程标签下,键入一个合适标题"课程 1",在注释窗口键入注释信息"圆形基础沉降"。
- 单击下一步或者切换至模型标签。
- 在模型标签下,指定模型分析类型和单元类型。因为本例考虑圆形基础,因此选择 轴对称模型和 15-节点选项。
- 保持默认单位。

PLAXIS 2D 案例教程:砂土地基上圆形基础沉降分析

● 在几何形状设定框中设定土层模型尺寸 xmin=0, xmax=5, ymin=-0, ymax=4。

同属性				X
项目(P)	模型(M)			
类型		一般		
模型	轴对称	▼ 重力		1.0 g (-Y direction)
单元	15-节点	▼ 地球重力	9.810	m/s²
首位		γ _{water}	10.00	kN/m³
半位 と度		模型边界		
天反		×min	0.000	m
기	kN	× x _{max}	5.000	m
时间	day	Y min	0.000	m y.≜
应力	kN/m²	y max	4.000	m H
重度	kN/m³	- mex		
				x
☑ 设为默认	人值(D)	_	下一步(N)	确认(O) 取消(C)

图 4 项目属性窗口模型标签

● 点击 OK 即关闭工程属性窗口,完成设定。

提示:如果犯了一些错误或者其他原因,需要更改项目属性设置,可以通过选择文件菜 单中项目属性选项,重新打开项目属性窗口。

土层定义

当关闭工程属性窗口后,窗口自动进入土体模式,在土体模式中可以定义土层。

提示:分析流程一共五个模式。更多关于模式的信息可以查阅参考手册相关章节。

土层的信息已钻孔的形式存在。钻孔包括土层位置好水位标高等信息。如果创建多个钻孔, PLAXIS 2D 将自动在钻孔间内插。超出钻孔位置的土层水平分布。创建水平土层的步骤:

- 点击竖向工具栏中的创建钻孔命令,开始定义土层
- 在绘图区 x=0 处单击,修改土层窗口将出现。
- 通过单击修改土层窗口中添加按钮添加土层。
- 设置土层顶部边界 y=4,保持底部边界 y=0m。
- 默认水位线位于 y=-0m。在钻孔柱状图上边修改水头为 2m (图 5)。

◎ 惨奴土层 Borehole_1 ↔ × 0.000	🛛 🧠 添加(A) 🖉	浸 插入① 	
水头 2.000	土层 水 初始条	件 场数据	
	土层	Borehole_1	
-10.00	# 材料	顶部 底部	
-20.00	1 <未赋值>	4.000 4.000	
-50.00			
-70.00			
-90.00			
-110.0			
-130.0			
-150.0			
170.0			
-180.0 -190.0			
200.0			
220.0			
240.0			
250.0			
270.0			
-290.0			
-300.0			
-320.0			
-330.0			
350.0		= 钻孔⑥	

图 5 修改土层窗口

土层材料数据组的创建和指定给土层的操作如下:

材料数据组

为了模拟土层行为,要为几何模型赋予合适本构模型和材料参数。在 PLAXIS 2D 中,土 层材料属性放置在材料数据组中,而材料数据组又储存在材料数据库中。从材料数据库中, 土层材料数据组可以指定给一个或多个土层。对于结构单元(例如墙、板、锚杆、栅格等) 赋值方式是一样的。但是不同的结构类型有不同的材料参数,因此有不同的材料数据组。 PLAXIS 2D 区别不同的数据组,例如土和界面、板、锚杆、embedded 桩、格栅。

为土层材料创建材料数据组,按照以下步骤:

🥅 通过单击修改土层窗口中材料按钮,打开材料设置窗口(图6)。

材料	科数据组	
		>>> 显示全局(G)
Ē	项目材料	
	材料组类型	土和界面 ▼
	组序	无 •
	新建(№)	编辑(E) 🚺 土工试验(S)
		确认(0)

图 6 材料设置窗口

- 单击材料数据组窗口中新建按钮。出现一个新的窗口,窗口包含五个标签:一般, 参数,流动参数,界面和初始条件。
- 在一般标签的材料组材料名称中,键入"砂土"。
- 默认材料本构模型为摩尔库伦,排水类型为排水
- 根据表1所列的材料参数,在一般属性框中键入一个合适的值(图7)。表中未提 到的值,保持为默认值。

土 - 摩⁄	尔-库伦 - 砂土	6			
	ف 🛋 🔁				
一般	参数 参流参数 界面	初始条件	E.		
属性	自	鮑	数值		
材	料组				
	名称		沙土		
	材料模型		摩尔-库伦		
:	排水类型		排水		
	颜色		RGB 161, 226, 232		
	注释				
	般属性				
1	^Y unsat kî	N/m³	17.00		
1	γ _{sat} k≀ ⊷	V/m³	20.00		
	级				
			-	下一步(N) 确认(O) 取消	

图 7 土和界面材料数据组一般标签

- 单击下一步按钮,或者直接切换至参数标签,设置模型参数。参数标签中的参数取 决于所选的模型(本例使用的是摩尔库伦模型)。
- 在参数标签(图8)的编辑框中键入表1中对应的模型参数。关于土层本构模型和 他们对应参数的详细信息,可以查看材料模型手册对应的章节。

土 - 摩尔-库伦 - 砂土	(martin		
🗅 🐑 🙈 📋			
一般参数参流参数界面	初始条件		
属性	单位 数值		
刚度			
E'	kN/m²	13.00E3	
v' (nu)		0.3000	
替代参数			
G	kN/m²	5000	
E _{oed}	kN/m²	17.50E3	
强度			
c' _{ref}	kN/m²	1.000	
φ' (phi)	•	30.00	
ψ (psi)	•	0.000	
速度			
Vs	m/s	53.71	
V _p	m/s	100.5	
∃ 高级			
			下一步(N) 确认(O) 取消

图 8 参数标签

参数	名称	砂土	单位
一般			
材料模型	模型	摩尔库伦	-
材料类型	类型	排水的	-
水位以上土体容重	γ_{unsat}	17	kN/m ³
水位以下土体容重	γ_{sat}	20	kN/m ³
参数			
参考弹性模量	E'	1.3*10 ⁴	kN/m ²
黏聚力	c _{ref} '	0	kN/m ²
泊松比	v'	0.3	-
内摩擦角	φ'	33	o
剪胀角	ψ	3	o

表1土层的材料属性

- 土层是排水的,几何模型中不包括界面,因此界面标签不需要设置。保持初始条件 和其余标签保持为默认值。单击 OK 按钮,保存定义的材料数据组。现在刚才创建 的材料数据组出现在材料设置窗口中。
- 拖动刚才创建的砂土材料到修改土层窗口左侧土柱的图形上(选中它,拖动的时候 鼠标按住左键不放),并放下(松开左键)。
- 单击材料设置窗口中 OK 按钮关闭数据组。
- 单击 OK 按钮关闭修改土层窗口。

提示:通过打开材料设置窗口,点击编辑按钮,可以修改已经设置好的材料数据组。也可以通过单击竖向工具栏的材料设置窗口打开材料设置窗口。

PLAXIS 2D 区别项目数据库和全局数据库。使用全局数据库可以再不同项目中调用材料数据组。通过单击材料设置窗口中显示全局按钮显示全局数据库。安装程序时,案例手册中所有案例的材料数据组都储存在全局数据库中。

通过选择浏览器中材料下拉菜单,可以将材料指定给对象。注意材料的下拉菜单包含了 所有的材料数据库。然而,下拉菜单中只有当前项目的材料数据组,而不是全局材料数据库 中所有的材料数据组。

程序对材料参数执行一致性检查,当材料数据检查不一致时,弹出一个警告信息。

绘图区显示网格可以简化几何模型的定义。网格在绘图区以矩阵的形式显示。它也可以 在绘制几何模型时,捕捉矩形的角点。

单击竖向工具栏的捕捉选项。在弹出的捕捉窗口中可以指定矩阵单元和间隔数。通过设置捕捉间隔值可以细化捕捉点的间距。本例中使用默认的值。

定义结构单元

在程序的结构模式中定义结构单元,利用统一的指定位移来模拟刚性基础的沉降。

PLAXIS 2D 案例教程:砂土地基上圆形基础沉降分析

- 单击结构标签进入到结构模式中定义结构单元。
- 单击竖向工具栏中创建指定位移按钮。
- 选择扩展菜单中创建线位移选项(图9)。

图 9 创建位移选项

- 在绘图区移动鼠标至点(04)并单击鼠标左键。
- 沿着土层的上边界移动至点(14)并再次单击鼠标左键。
- 单击右键按钮停止绘制。
- 在选择浏览器中设置指定位移的 x 分量为固定。
- 通过输入 Uy,start,ref 值为-0.05,代表方向向下位移值为 0.05m,指定 y 方向位移分 布形式为均匀(图 10)。

图 10 创建位移选项

至此,几何模型已经创建完成。

1.2 网格划分

当几何模型完成后,就可以生成有限元网格。PLAXIS 2D 网格划分是完全自动划分,几 何模型被划分为基本的单元类型和相容的结构单元(如果创建了)。

为了考虑土层、荷载和结构的有限元网格化划分,网格划分充分考虑了模型中点和线的 位置。有限元网格划分基于三角剖分原理,搜索最优三角形。除了生成有限元网格之外,也 是几何模型(点、线和类组)到生成有限元网格(单元、节点和应力点)输入数据(属性、 边界条件、材料数据等)信息的一次传递。

生成有限元网格,按照下列步骤:

● 单击对应标签,切换至网格模式

◎ 单击竖向工具栏中的生成网格按钮,弹出网格划分窗口。

● 使用**单元分布参数**默认的选项中等。

▶ 单击 OK,开始网格生成。

Mesh options		×
Enhanced mesh refinements ● 单元分布		
	中等	¥
◎ 专家设置		
相对单元尺寸	1	
Element dimensions	0.384	
	;	确认 取消

图 11 网格划分窗口

风格生成后,即可单击查看网格按钮。弹出一个新的窗口显示生成的网格(图 12)。 注意在基础下面网格自动加密。

注息住奉赋下囬內恰曰功加密。

提示:默认情况下,单元分布是中等。在网格划分窗口中可以改变单元分布。此外,还可以对网格进行全局或局部加密(详见参考手册相关章节)。

如果修改了几何模型,需要重新生成有限元网格。

自动生成的有限元网格可能不是完全符合计算需要。因此,需要时可以检查网格并细化 网格。

● 单击关闭按钮关闭输出程序回到输入程序的网格模式。

图 12 输出窗口生成的网格

1.3 计算

网格生成后,就完成了有限元模型。

初始条件

初始阶段总是初始条件的生成,一般来说,初始条件由初始几何模型和初始应力条件组成。例如,有效应力、孔隙水压力和状态参数。

水力模式可以跳过。单击分步施工标签进入分步施工模式。当一个新的项目已经定义好 后程序自动创建一个阶段并自动选中该阶段,第一个阶段就是"初始阶段"(图 13)。所 有的结构单元和荷载初始阶段自动冻结,只有土体是激活的。

阶段浏览器	
70 70 70 10	
Initial phase [InitialPhase]	

图 13 阶段浏览器

下面将介绍初始阶段的定义。虽然使用的是默认参数,但还是要有一个宏观的概念。

三 通过双击阶段浏览器的初始阶段,或点击编辑阶段按钮,将弹出阶段窗口(图 14)。

● Initial phase [InitialPhase] ● 一般 □ D Initial phase [InitialPhase] □ D Initial phase [Initial	阶段				
Initial phase [InitialPhase]	5 5 1 1 1				
□	🔰 Initial phase [InitialPhase]	📑 🗄 🚍	Name	Value	最近计算的曰志信息
ID Initial phase [InitialPhase] 计算类型 16 以浸程 荷载类型 分步施工 IM 1000 孔丘计算关型 潜水位 水位 0.000 day 第一计算步 0.000 day 最终步 0.000 day 设计方法 (没有) 1 变形控制参数			□ 一般		
计算类型 ☆ 1000 20%weght 1.000 乳压计算类型 > 潜水位 点 0.000 day 第一计算步 0.000 day 最终步 0.000 day 设计方法 (没有) ⑦ 支形控制参数 ●			ID	Initial phase [InitialPhase]	
荷號英型 □ 分步範工 ▼ IM weight 1.000 ↓ 可止计算支型 量水位 ▼ 估计结束的词 0.000 day 第一计算步 最终步 设计方法 (没有) ② 影论控制参数 ▼			计算类型	📑 K0 过程	•
2№ _{web} x 1.000 九丘计算块型 当水位 山;结果时间 0.000 day 第一计算步 设计方法 (没有) ② 交形拉制参数			荷载类型	🔡 分步施工	-
引圧甘菜(未型) □			ΣM weight	1.00	100
估计结理时间 0.000 day 第一计算步 最终步 设计方法 (没有) ② 形控制参数			孔压计算类型	🚽 潜水位	▼ 注粋
 第—计算步 最终步 设计方法 (没有) ▼ 3 交形控制参数 			估计结束时间	0.000 da	lay
 最终步 。 设计方法 (没有) ▼ 交形控制参数 			第一计算步		
设计方法 (公有) ▼ □ 交形控制参数			最终步		
② 交形控制参数			设计方法	(没有)	•
			∃ 变形控制参数		

图 14 初始阶段阶段窗口

→ 阶段窗口一般标签下,默认计算类型是 KO 过程。本项目将使用 KO 过程生成初始应力。

□ 荷载类型默认分步施工。

😇 孔压计算类型默认选择为潜水位

● 阶段窗口其它的值默认,单击 OK,关闭阶段窗口。

提示: KO 过程主要用于水平地层,水平地表和水位线水平(如果有)的情况。详见参考手册有关 KO 章节。

对于变形问题主要由两种边界条件:指定位移和指定力(荷载)。原则上,任意一个边 界在任意一个方向上都必须有一个边界条件。也就是说,没有施加边界条件时(自由边界) 意味着指定力为零和位移自由。

为了避免几何模型的位移不确定的情况,几何模型的一些点必须有指定位移。指定位移 最简单的形式是固定边界(位移为零),但是也可以指定非零位移。

- 展开模型浏览器模型条件目录树
- 展开变形目录树。注意使用默认边界条件前面的对话框勾选上了。默认情况下,在 模型边界底部是完全固定边界条件,垂直边界约束水平向(Ux=0; Uy=自由)。
- 展开水子目录树。根据修改土层窗口中指定给钻孔的水头标高值生成水位,该水位 自动指定为全局水位(图 15).

图 15 模型浏览器变形和水子目录

初始的水位线在修改土层窗口中已经输入了。

对钻孔指定的水头生成了水位线,如图 16.注意全局水位在水力模式和分步施工模式中都显示。但是只有在水力模式中显示所有的水位线。

图 16 初始阶段分步施工模式

Phase 1: 基础

为了模拟基础的沉降,需要进行塑性计算。PLAXIS 2D 有一个方便的程序即自动加载步, 程序中叫做"分步施工"。这个荷载类型适用大多数项目。在塑性计算中,激活指定的位移 用来模拟基础的沉降。按照下列步骤定义计算阶段。

***** 添加新的阶段。一个新的阶段,命名为 Phase_1.

- 双击 Phase_1 打开阶段窗口。
- 一般标签中的 ID 输入一个合适的名字(例如 Indentation)。
- 当前阶段从初始阶段开始,本阶段使用默认的选项和值(图 17)。

20 阶段		There		
Initial phase [InitialPhase]	🕂 📑 🚍	Name	Value	最近计算的日志信息
🛛 📀 Indentation [Phase_1]	🖬 📑 🚍	□ 一般		▲ 确认
		ID	Indentation [Phase_1]	
		起始阶段	Initial phase 🔻	
		计算类型	▼ 封壁	
		荷载类型	🕒 分步施工 🔹 🔻	1-47
		ΣM _{stage}	1.000	注释
		ΣM weight	1.000	E
		孔压计算类型	→ 潜水位 🔹	
		时间间隔	0.000 day	
		估计结束时间	0.000 day	
		第一计算步	1	
		最终步	118	
		设计方法	(没有) 🔹	
		④ 变形控制参数		
		□ 数值控制参数		
		使用的最大内核	256	
		储存的最大步数	1	
		使用默认迭代参数	✓	
		最大步数	250	▼
				—————————————————————————————————————

图 17 阶段窗口 Indentation 阶段

- 单击 OK 关闭阶段窗口。
- 单击分步施工模式标签进入该模式。
- 在绘图区选择指定位移右键,从下拉菜单中选择激活选项(如图 18).

图 18 分步施工模式中激活指定位移

提示:可以使用阶段浏览器或者阶段窗口中添加、插入和删除按钮,增加、插入或删除 计算阶段。

执行计算

所有阶段(本例是两个阶段)被标记为计算(蓝色箭头显示)。起始阶段控制计算的顺序。

▲ 单击计算按钮,开始计算。忽略未选择节点和应力点的提示。在计算过程中,弹出计算窗口,窗口中显示了计算过程信息。

激活任务					
🚫 计算阶	段中				
Indentation [Phas	e_1]				
──内核信息────					
开始时间	14:26:43		CPUs: 2/2		hit VIP 64 hit
占用内存	~74 MB		Cr03. 2/1		
在上一个加载。	6结束时的总乘子			计算过程	
ΣM _{dispX}	1.000	P excess, max	0.000	Fy	
ΣM _{dispY}	1.000	ΣM _{area}	1.000	0.00	
ΣM weight	1.000	Fx	0.000		
ΣM _{accel}	0.000	Fy	-42.81	1	
ΣM _{sf}	1.000	国際	0.03950		
^{∑™} stage	0.2769	时间	0.000	-100 +	0.0100 0.02
		2017,14,161	0.000		
	120			umax	
当前步的迭代;	过程		1	~_	
当前计算步	36	■ 最大步数 ■ 5.5 00 5 45	250	単元	467
迭代 △尾温美	11		60	分解 过智时间	100 %
王问庆左	0.01225	合计庆左	0.01000	化苷的间	115
当前步的塑性。	5				
塑性应力占	1336	不精确	24	容许的	137
塑性界面点	0	不精确	0	容许的	3
拉伸点	15	帽盖/硬化点	0	张力和顶点	0
				J	
		预货	5 <u>0</u>	▶ 恢复(R)	🛛 🞽 停止(S)
 敏小化					1 社务止在运行

图 19 计算窗口

这个信息不断更新,信息显示了计算过程,当前计算步,当前迭代过程的全局误差和当 前步的塑性点数量。执行这个计算需要几秒钟。当计算完成后,计算窗口关闭返回主窗口。

🌽 阶段浏览器的阶段显示更新了。计算阶段前以绿色圆圈显示

一在查看计算结果前保存该项目。

1.4 计算结果

一旦计算完成后,输出窗口中就可以显示计算结果。在输出窗口中,位移和应力可以以 二维整个模型和某一断面或者结构单元显示。计算结果也可以以表格形式显示。

为了检查由指定 0.05m 位移生成的力,执行下列操作:

● 打开阶段窗口。

PLAXIS 2D 案例教程:砂土地基上圆形基础沉降分析

达到的值目录树中 Force-Y 的值非常重要。这个值代表了施加指定位移后反作用力的大小,即对应1弧度的基础上作用的总的反力(注意分析类型为轴对称)。为了获得总的反力,Force-Y 的值乘以2π(大约588kN).

输出程序中可以分析计算结果。在输出窗口中,可以以整个模型和某一断面和结构单元 窗口显示位移和应力。计算结果也可以以表格形式输出。为了查看基础的计算结果,执行下 列操作:

● 选择阶段浏览器的最后一个计算阶段。

单击竖向工具栏中查看计算结果。输出视窗将显示计算阶段最终的变形的网格(图
 20)。变形的网格自动缩放到合适的查看变形的值。

图 20 计算完成后的变形网格

 选择变形菜单中总位移-|u|选项。总位移以变形云图显示。显示区右侧图例显示 了颜色分布。

提示:单击视图菜单中对应选项可以显示和关闭图例。

单击工具栏中等值线按钮,视图可以以等值线形式显示总位移分布。同时有数值显示等值线的数值大小。

单击箭头按钮,所以节点的总位移以箭头形式显示,箭头长度的大小代表位移值的相对大小。

提示:变形菜单中既有总位移又有增量位移。增量位移是一个计算步(本例中是最后一步)的位移。增量位移对于查看破坏机理非常有用。

訊信达

选择应力菜单中有效主应力菜单中选择有效主应力选项,视图显示了每一个土单元
 的应力点的有效主应力,包括应力大小和方向(图 21)。

图 21 有效主应力

■ 单击工具按钮的表按钮。程序将弹出包含表格的新窗口,表中显示了包含主应力的 值和所有单元的每一个应力点的应力信息。

案例 B: 柔性基础

现在修改原来的项目,用柔性的板来模拟基础。用板来模拟基础能够计算基础的内力。 本例的几何模型和原来的模型一样,除了增加板单元外。由指定位移改为施加指定荷载。没 有必要创建一个新的模型,可以打开原来的模型,修改它并用不同的名字保存。为此执行下 列操:

2.1 修改土层

- 在输入程序文件菜单中选择项目另存为。为当前项目文件键入一个未使用的名字并 单击保存按钮。
- 切换到结构模式。
- 右键指定位移,在下拉菜单中选择线位移,在扩展菜单中单击删除选项(图 22)。

图 22 删除指定位移

在基础的位置处右键线,在下拉菜单中选择创建<板选项(图 23).创建板用来模拟柔性基础。

	Line_1			
	创建 ▶	***	线荷载	
0,	合并等价几何对象	Ψ 4 Ψ	线位移	
7	捕捉	8	Line contraction	
×	删除	l	板	
		•*	土工格栅	
		***	嵌入桩	
		<u>+ 1</u>	正向界面	
		<u>+ 11</u>	负向界面	
		•**•	点对点锚杆	
		→ ‡+	#	
		:	排水线	
		1	地下水流动 BC	

图 23 为线指定板

● 再一次在基础的位置处右键线,在下拉菜单中选择创建<线荷载选项(图 24)

图 24 为线指定线荷载

 选择浏览器中Y方向分布荷载默认的值为-0.1Kn/m².当激活荷载时,再改变输入的值为 真实值。

为基础指定材料属性

💼 单击竖向工具栏中材料属性按钮。

- 在材料设置窗口中材料组类型下拉菜单中选择板。
- 单击新建按钮。出现新的窗口,定义基础的材料属性。

PLAXIS 2D 案例教程:砂土地基上圆形基础沉降分析

- 在名称框内输入"基础"。材料类型默认为弹性选项。本例保持这个选项。
- 键入表 1.2 中的属性。表中没有提到的值保持为默认值。
- 单击 OK,材料设置窗口材料目录中出现新建的材料。

	板参数	
参数	值	单位
材料类型	弹性; 各向同性	Ι
轴向刚度 EA	$5*10^{6}$	kN/m
抗弯刚度 EI	8. $5*10^{3}$	kNm ² /m
重度 ₩	0	kNm/m
泊松比 V	0	_

表 2 基础的材料属性

- 拖动"基础"材料到绘图区并指定给基础。注意鼠标的形状发生变化意味着已经为基础 指定了材料。
- 单击 OK 按钮关闭材料数据组。

2.2 生成网格

● 切换至网格模式

🕟 创建网格,单元分布参数选择默认选项(中等)。

●查看网格。

● 单击关闭标签,关闭输出程序。

2.3 计算

- 切换至分步施工模式
- 初始阶段和刚性基础案例一样。
- 双击下一个阶段(Phase_1)在 ID 框中并键入一个合适的名字。保持计算类型为塑性计算并保持加载类型为分步施工。
- 关闭阶段窗口。
- 在分步施工模式中激活荷载和板。模型如图 25。

記信达

图 25 激活模型中板和荷载

 修改选择浏览器中线荷载垂直分量为-188kN/m²(图 26)。注意这个值近似等于第一个 案例基础所受荷载。(188 kN/m²* π (1.0m)²≈590kN)。

图 26 选择浏览器荷载分量的定义

● 模型浏览器中 water 标签不做任何修改。

至此,已经定义好计算阶段。在开始计算之前,推荐为荷载-位移曲线或者应力应变曲线选 择节点或者应力点。定义的步骤如下:

单击为生成曲线选择点按钮。结果,在输出程序中显示了所有的节点和应力点。可以通过直接选择节点或应力点或者通过使用选择点窗口选择点。

- 在选择点窗口中,选择点的坐标中键入(04),并单击搜索最近。指定节点或应力点 附近的点以列表的形式显示。
- 选中(04)附近的点前面勾选框。选中的节点在模型中以"A"显示(当网格菜单中选 中标签选项选中时)。
- 单击更新按钮返回输入程序。
- 检查是否两个计算阶段标记为计算,标记为计算时以蓝色箭头显示。如果未标记为计算, 可以单击计算阶段的图标或者右键选择标记计算。

▶ 单击计算按钮开始计算。

📊 计算完成后保存项目。

2.4 查看计算结果

计算完成后最后一步计算结果可以通过单击查看结果按钮查看。查看应力和变形信息的 方法和前面的案例一样。

▶ 单击竖向工具栏中选择结构按钮,双击显示区基础。弹出一个新的窗口,视图中可以显示基础的弯矩或者位移,这取决于在选择结构之前的视图。

• 注意此时菜单已经改变。从力菜单中选择不同选项查看基础的内力。

生成荷载-位移曲线

➢ 除了最后计算步的结果有用之外,查看荷载-位移曲线也非常有用。为了生成荷载-位移曲线,如图 27,按照下列步骤:

● 单击工具栏中曲线管理器,弹出曲线管理器。

-Axis	Y-Axis	
A (0.00 / 4.00) -	Project	•
Deformations Orbal displacements	- Step ⊟ Multiplier - ΣMdisp	E
u _x u _y ® Stresses	- ΣMioadA ΣMioadB ΣMweight ΣMarea	
Invert sign		•

图 27 曲线管理器窗口

- 在图表标签中,单击新建。弹出出现生成窗口,如图 27.
- X轴下拉菜单中选择 A(1/4)。变形菜单下选择总位移 | u |。
- Y轴下拉菜单中选择项目。从乘子 Multipliers 中选择∑Mstage。该值代表已经施加指 定改变的百分比。因此这个值从 0 到 1,到达 1 意味着指定的荷载已经 100%施加完成, 指定的状态完全达到。
- 单击 OK 按钮接受输入并生成荷载-位移曲线。生成的曲线如图 28.

記信达

图 28 基础荷载-位移曲线

本教程到此结束!